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ABSTRACT 

The authors introduced rps-closed sets and rps-open sets in topological spaces and established their relationships 

with some generalized sets in topological spaces. The aim of this paper is to introduce rps-T½, rps-T⅓, rps-Tb, rps-T¾ 

spaces and characterize their basic properties.  

 

MSC 2010:54D10 

Keywords: rps-T½ spaces, rps-T⅓ spaces, rps-Tb spaces, rps-T¾ spaces. 

 

1. INTRODUCTION                
Separation axioms in topological spaces play a dominated role in analysis. Recently general topologists concentrate 

on separation axioms between T0 and T1. In this paper the concepts of rps-T½, rps-T⅓, rps-Tb, rps-T¾ spaces are 

introduced, characterized and studied their relationships with T½ space[7], semi-T½ space[3], pre-regular-T½ 

space[5], semi-pre-T½ space[4], pgpr-T½ space[2], pre-semi-Tb space[14], pre-semi-T½ space[14], pre-semi-T¾ 

space[14], that are respectively introduced by Levine, Bhattacharya, Gnanambal, Dontchev, Anitha, Veerakumar 

and their collaborators.  

 

2. PRELIMINARIES 
Throughout this paper (X,τ) represents a topological space on which no separation axiom is assumed unless 

otherwise mentioned. For a subset A of a topological space X, clA and intA denote the closure of A and the interior 

of A respectively. X \ A denotes the complement of A in X. Throughout the paper  indicates the end of the proof. 

We recall the following definitions and results.  

 

Definition 2.1  
A subset A of a space (X,τ) is called 

(i)    regular-open [13] if A = int clA and regular-closed if A = cl intA.   

(ii)   semi-open [6] if  A   cl intA and  semi-closed  if int clA   A. 

(iii)  pre-open [9] if  A   int clA and  pre-closed  if cl intA   A. 

(iv)  semi-pre-open [1] if A   cl int clA and semi-pre-closed if int cl intA   A.            

       

Definition 2.2 
A subset A of a space (X,τ) is called g-closed[7] (resp. rg-closed[10], resp. gsp-closed[4], resp. gpr-closed[5], resp. 

gp-closed[8], resp. pre-semiclosed[14], resp. pgpr-closed[2], resp. rps-closed[11], resp. sg-closed[3]) if  clA  U 

(resp. clA  U, resp. spclAU, resp. pclA U, resp. pclA U, resp. spclAU, resp. pclA U, resp. spclAU, resp. 

sclAU)   whenever AU and U is open (resp. regular-open, resp. open, resp. regular-open, resp. open, resp.  

g-open, resp. rg-open, resp. rg-open, resp. semi-open). 

A subset B of a space X is called g-open if X \ B is g-closed. The concepts of rg-open, gsp-open, gpr-open, gp-open, 

pre-semiopen, pgpr-open, rps-open and sg-open sets can be analogously defined.  

Definition 2.3 
A space (X,τ) is called a T½ space[7] (resp. T

*
½

 
space[10], resp. semi-T½ space[3], resp. pre-regular-T½ space[5], 

resp. semi-pre-T½ space[4], resp. pre-semi-T½ space[14], resp. pgpr-T½ space[2], resp. pre-semi-Tb space[14], resp. 

pre-semi-T¾ space[14], resp. gpr-T½ space[2]) if every g-closed (resp. rg-closed, resp. sg-closed, resp. gpr-closed, 

On rps-separation axioms 
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resp. gsp-closed, resp. pre-semiclosed, resp. pgpr-closed, resp. pre-semiclosed, resp. pre-semiclosed, resp. gpr-

closed) set is closed(resp. closed, resp. semi-closed, resp. pre-closed, resp. semi-pre-closed, resp. semi-pre-closed, 

resp. pre-closed, resp. semi-closed, resp. pre-closed, resp. pgpr-closed. 

 

Lemma 2.4 [11] If a set A is rps-closed then spclA \ A does not contain a non empty rg-closed set. 

 

Definition 2.5 [15] A space X is called extremally disconnected if the closure of each open subset of X is open.      

 

Lemma 2.6[5] Every pre-regular-T½ space is semi-pre T½. 

 

Definition 2.7  
A function f: X → Y is called              

(i) semi-continuous [9] if f
 -1

(V) is semi-closed in X for every closed set V in Y. 

(ii) pre-continuous [9] if f
 -1

(V) is pre-closed in X for every closed set V in Y. 

(iii) semi-pre-continuous [1] if f
 -1

(V) is semi-preclosed in X for every closed set V in Y. 

(iv) pre-semicontinuous [14] if f 
-1

(V) is pre-semiclosed in X for every closed set V in Y. 

(v) rps-continuous [12] if f 
-1

(V) is rps-closed in X for every closed set V in Y. 

 

Lemma 2.8[11]  

(i)   Every rps-closed set is pre-semiclosed 

(ii)  Every pgpr-closed set is rps-closed.    

(iii) Every semi-pre-closed set is rps-closed. 

(iv)  Every rps-closed set is gsp-closed.     

 

Lemma 2.9 [2] In an extremally disconnected space, pclA = spclA. 

 

Lemma 2.10[2] Every pre-closed set is pgpr-closed. 

 

We use the following notations. 

RPSO(X, τ) - The collection of all rps-open sets in (X, τ).  

SPO(X, τ) - The collection of all semi-pre-open sets in (X, τ).  

SPC(X, τ) - The collection of all semi-pre-closed sets in (X, τ).  

RPSC(X, τ) - The collection of all rps-closed sets in (X, τ).  

 

3. rps-Tk spaces where k{b, ½, ⅓, ¾} 
As application of regular pre-semiclosed sets, four spaces namely, regular pre-semi-T½ spaces, regular pre-semi-T⅓ 

spaces, regular pre-semi-Tb spaces and regular pre-semi-T¾ spaces are introduced. The following implication 

diagram will be useful in this paper. 

 

Diagram 3.1 
semi-closed                 semi-pre-closed                  rps-closed                 pre-semiclosed 

 

                                            

                                            pre-closed 

 Examples can be constructed to show that the reverse implications are not true. This motivates us to introduce the 

following spaces. 
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Definition 3.2 

A space (X,τ) is called regular pre-semi-T½(briefly rps-T½) if every rps-closed set is semi-pre-closed. 

 

Definition 3.3 

A space (X,τ) is called regular pre-semi-T⅓ (briefly rps-T⅓) if every pre-semi-closed set is rps-closed.     

 

Definition 3.4 

A space (X,τ) is called regular pre-semi-Tb (briefly rps-Tb) if every rps-closed set is semi-closed.     

 

Definition 3.5 

A space (X,τ) is called regular pre-semi-T¾ (briefly rps-T¾) if every rps-closed set is pre-closed. 

 

Theorem 3.6   
(i)   Every pre-semi-T½ space is an rps-T½ space. 

(ii)  Every semi-pre-T½ space is an rps-T½ space.  

(iii) Every pre-regular-T½ space is an rps-T½ space.  

(iv)  Every rps-Tb space is an rps-T½ space. 

 

Proof:  
Suppose X is pre-semi-T½. Let V be an rps-closed set in X. Using Lemma 2.8(i), V is pre-semiclosed. Since X is 

pre-semi-T½, using Definition 2.3, V is semi-pre-closed.  This proves (i).    

Suppose X is semi-pre-T½. Let V be an rps-closed set in X. Using Lemma 2.8(iv), V is gsp-closed. Since X is semi-

pre-T½, using Definition 2.3, V is semi-pre-closed. This proves (ii).    

(iii) follows from (ii) and Lemma 2.6.  

(iv) follows from the fact that every semi-closed set is semi-pre-closed. 

                                                                                                                                                                                    □                                              

The converses of Theorem 3.6 are not true as shown in Example 4.1 and Example 4.2. 

 

Theorem 3.7 

(i)   Every rps-T¾ space is an rps-T½ space. 

(ii)  Every rps-T¾ space is a pgpr-T½ space. 

(iii) Every pre-semi-T¾ space is an rps-T⅓ space. 

Proof 
(i) follows from the fact that every pre-closed set is semi-pre-closed. 

Suppose X is rps-T¾. Let V be a pgpr-closed set in X. Using Lemma 2.8(ii), V is rps-closed. Since X is rps-T¾, V is 

pre-closed. This proves (ii). 

Suppose X is pre-semi-T¾. Let V be a pre-semiclosed set in X. Since X is pre-semi-T¾, using Definition 2.3, V is 

pre-closed. Using Lemma 2.10 and Lemma 2.8(ii), V is rps-closed. This proves X is an rps-T⅓ space.                                                                                                                                          

                                                                                                                                                                                   □          

The converses of Theorem 3.7 are not true as shown in Example 4.3. 

 

Theorem 3.8 
Every pre-semi-Tb space is an rps-Tb space.  

Proof 
Suppose X is pre-semi-Tb. Let V be an rps-closed set in X. Using Lemma 2.8(i), V is pre-semiclosed. Since X is pre-

semi-Tb, V is semi-closed. This proves the theorem.                                                                                                  □                                                                                                                                                                                      

The converse of Theorem 3.8 is not true as shown in Example 4.1.                                                                 

           

The concepts of rps-T½ and semi-T½ are independent as shown in Example 4.2 and Example 4.4. 

 

The concepts of rps-Tb and rps-T⅓ are independent with the concept of rps-T¾ as shown in Example 4.1,  

Example 4.2 and Example 4.3. 

From the above discussions and known results we have the following implication diagram. In this diagram by  
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A   B we mean A implies B but not conversely and 

A             B means A and B are independent of each other.       

 

Diagram 3.9 

                      T½                                                                       pre-regular-T½ 

     

                                             semi-pre-T½                                                pgpr-T½ 

 

                                pre-semi-T½                 pre-semi-T¾              rps-T⅓ 

 

semi-T½                                      rps-T½                                                 rps-T¾              

 

                           pre-semi-Tb                   rps-Tb 

 Theorem 3.10 
A space X is rps-T½ if and only if every singleton set is rg-closed or semi-pre-open.     

Proof 

Suppose X is rps-T½. Fix xX. Suppose {x} is not rg-closed. Then X \ {x} is not rg-open. Then X is the only rg-

open set containing X \ {x} and hence X \ {x} is trivially an rps-closed subset of (X,τ). Since X is rps-T½, using 

Definition 3.2, X \ {x} is semi-pre-closed. Therefore {x} is semi-pre-open. 

Conversely suppose every singleton set is rg-closed or semi-pre-open. Let A be rps-closed in X. Since A is  

rps-closed, by using Lemma 2.4, spclA \ A does not contain a non empty rg-closed set. Let x spclA. By our 

assumption {x} is either rg-closed or semi-pre-open. 

 

Case (i) 

Suppose there is an element x spclA such that {x} is rg-closed. Since {x} is  

rg-closed, using Lemma 2.4, xspclA \ A that implies xA. Therefore A = spclA. Therefore A is semi-pre-closed. 

 

Case (ii) 

Suppose {x} is not rg-closed for all xspclA. 

xspclA         {x} is semi-pre-open 

                       {x} A  Ø  

                        xA  

                        A = spclA 

                        A is semi-pre-closed.  

From Case (i) and Case (ii), it follows from Definition 3.2 that X is rps-T½. 

                                                                                                                                                                             □          

Theorem 3.11  

Let X be an rps-T⅓ space. Then 

(i) X is rps-T½ if and only if it is pre-semi-T½. 

(ii) X is rps-Tb if and only if it is pre-semi-Tb.  

(iii) X is rps-T¾ if and only if it is pre-semi-T¾.  
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Proof 

Suppose X is rps-T½ and rps-T⅓. Let A be pre-semiclosed in X. Using Definition 3.3, A is rps-closed. Since X is rps-

T½, by Definition 3.2, A is semi-pre-closed. Therefore X is pre-semi-T½.  

Conversely we assume that X is pre-semi-T½. Suppose A is pre-semiclosed. Since X is pre-semi-T½, using 

Definition 2.3, A is semi-pre-closed. Using Lemma 2.8(iii), A is rps-closed. This proves that X is rps-T⅓.  

Suppose B is rps-closed. Using Lemma 2.8(i), B is pre-semiclosed. Since X is pre-semi-T½, using Definition 2.3, B 

is semi-pre-closed. Therefore X is rps-T½. This proves (i).  

Suppose X is rps-T⅓ and rps-Tb. Let A be a pre-semi-closed set in X. Using  

Definition 3.3, A is rps-closed. Since X is rps-Tb, by Definition 3.4, A is semi-closed. Therefore X is pre-semi-Tb.  

Conversely we assume that X is pre-semi-Tb. Suppose A is a pre-semiclosed subset of X. Since X is pre-semi-Tb, A 

is semi-closed. Using Diagram 3.1, A is semi-pre-closed. Using Lemma 2.8(iii), A is rps-closed. This proves that X 

is rps-T⅓. Suppose B is rps-closed. Using Lemma 2.8(i), B is pre-semiclosed. Since X is pre-semi-Tb, B is semi-

closed so that X is rps-Tb. This proves (ii).                                                                                                                                             

Suppose X is rps-T⅓ and rps-T¾. Let A be a pre-semiclosed set in X. Using  

Definition 3.3, A is rps-closed. Since X is rps-T¾, by using Definition 3.5, A is pre-closed. Therefore X is  

pre-semi-T¾.  

Conversely we assume that X is pre-semi-T¾. Suppose A is pre-semiclosed. Since X is pre-semi-T¾, A is pre-closed. 

Using Diagram 3.1, A is semi-pre-closed. Using  

Lemma 2.8(iii), A is rps-closed. This proves that X is rps-T⅓. Suppose B is rps-closed. Using Lemma 2.8(i), B is 

pre-semiclosed. Since X is pre-semi-T¾, B is pre-closed so that X is rps-T¾. This proves (iii). 

                                                                                                                                                                                      □  

Theorem 3.12 

(i) If (X,τ) is an rps-T⅓ space then for each xX, {x} is either rg-closed or rps-open. 

(ii) If (X,τ) is an rps-Tb space then for each xX, {x} is either rg-closed or semi-open. 

(iii) If (X,τ) is an rps-T¾ space, then for each xX, {x} is either rg-closed or pre-open. 

proof 

Suppose {x} is not an rg-closed subset of an rps-T⅓ space (X,τ). So {x} is not g-closed. Then X is the only g-open 

set containing X \ {x}. Therefore X \ {x} is pre-semiclosed since (X,τ) is rps-T⅓, X \ {x} is rps-closed or 

equivalently {x} is rps-open. This proves (i).    

Suppose {x} is not an rg-closed subset of an rps-Tb space (X,τ). Then X is the only rg-open set containing X \ {x} 

and hence X \ {x} is rps-closed. Since (X,τ) is rps-Tb, X \ {x} is semi-closed or equivalently {x} is semi-open.  

Suppose {x} is not an rg-closed subset of an rps-T¾ space (X,τ). Then X \ {x} is not rg-open. X is the only rg-open 

set containing X \ {x} and hence X \ {x} is trivially an rps-closed subset of (X,τ). Since (X,τ) is rps-T¾, X \ {x} is 

pre-closed or equivalently {x} is pre-open. 

                                                                                                                                                                                      □ 

The converses of Theorem 3.12 are not true as shown in Example 4.2, Example 4.3 and Example 4.4.                                                                                                                                    

 

Theorem 3.13 

A space (X,τ) is rps-T½ if and only if SPC(X,τ) = RPSC(X,τ). 

A space (X,τ) is rps-T½ if and only if SPO(X,τ) = RPSO(X,τ). 

Proof 

From Diagram 3.1, SPC(X,τ)RPSC(X,τ). 

(X,τ) is rps-T½  RPSC(X,τ)SPC(X,τ) 

                           SPC(X,τ) = RPSC(X,τ). 

Conversely suppose SPC(X,τ) = RPSC(X,τ)    (X,τ) is rps-T½. This proves (i). 

The result (ii) follows directly from result(i).           

                                                                                                                                                                                      □                                                                                    

Theorem 3.14 

Let X be an extremally disconnected space.  

(i) If X is rps-T½ and gpr-T½, then it is pre-regular-T½. 

(ii) If X is T
*
½,

 
then every gp-closed set is rps-closed. 
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Proof 

Let X be an extremally disconnected space. Suppose X is rps-T½ and gpr-T½. Let A be gpr-closed in X. Since X is 

gpr-T½, using Definition 2.3, A is pgpr-closed. Again using Lemma 2.8(ii), A is rps-closed. Since X is rps-T½, using 

Definition 2.2, A is semi-pre-closed. Again using Definition 2.1(iv), int cl intAA. Since X is extremally 

disconnected, it follows that cl intA  A. Therefore A is pre-closed that implies X is pre-regular-T1/2.  

This proves (i). 

Suppose X is T
*
½, Let AU, U be rg-open and A be gp-closed. Since X is T

*
½, by Definition 2.3, U is open. Since 

A is gp-closed, by Definition 2.2, pclAU. Since X is extremally disconnected, using Lemma 2.9,  

spclA = pclA  U. Therefore A is rps-closed. This proves (ii).  

                                                                                                                                                                                   □ 

Theorem 3.15 

Let X be T
*

½
 
space. Then every gsp-closed set is rps-closed.  

Proof 

Suppose A is gsp-closed in X. Let AU and U be rg-open. Since X is T
*
½, by Definition 2.3, U is open and since A 

is gsp-closed, by Definition 2.2, spclAU. Again using Definition 2.2, A is rps-closed.                                                                                                                                            

                                                                                                                                                                                   □ 

Theorem 3.16 

(i) If X is rps-T½ then every rps-continuous function is semi-pre-continuous. 

(ii) If X is rps-T⅓ then every pre-semicontinuous function is rps-continuous. 

(iii) If X is rps-Tb then every rps-continuous function is semi-continuous. 

(iv) If X is rps-T¾ then every rps-continuous function is pre-continuous. 

Proof 

Suppose X is rps-T½. Let A be closed in Y and f: X→Y be rps-continuous. Since f is rps-continuous, using 

Definition 2.7(v), f
 -1

(A) is rps-closed. Since X is rps-T½, using Definition 3.2, f
 -1

(A) is semi-pre-closed. This proves 

that f is semi-pre-continuous.  

Suppose X is rps-T⅓. Let A be closed in Y and f be pre-semicontinuous. Since f is pre-semicontinuous, using 

Definition 2.7(iv), f
 -1

(A) is pre-semiclosed. Since X is rps-T⅓, Definition 3.3, f
 -1

(A) is rps-closed. This proves that f 

is rps-continuous.   

Suppose X is rps-T⅓. Let A be closed in Y and f be rps-continuous. Since f is rps-continuous, using  

Definition 2.7(v), f
 -1

(A) is rps-closed in X. Since X is rps-Tb, using Definition 3.4, f
 -1

(A) is semi-closed. Therefore f 

is semi-continuous.   

Suppose X is rps-T¾. Let A be closed in Y and f be rps-continuous. Since f is rps-continuous, using  

Definition 2.7(v), f
 -1

(A) is rps-closed in X. Since X is rps-T¾, using Definition 3.5, f
 -1

(A) is pre-closed. Therefore f 

is pre-continuous.                  

                                                                                                                                                                                      □ 

Theorem 3.17 

If X is pre-semi-T½ and if f: X→Y then the following are equivalent. 

(i) f is semi-pre-continuous. 

(ii) f is pre-semicontinuous. 

(iii) f is rps-continuous. 

Proof 

Suppose f is semi-pre-continuous. Let AY be closed. Since f is semi-pre-continuous,  

f
 -1

(A) is semi-pre-closed in X. Using Diagram 3.1, f
 -1

(A) is pre-semiclosed. Therefore f is pre-semicontinuous. This 

proves (i)   (ii). 

Suppose f is pre-semicontinuos. Let AY be closed. Since f is pre-semicontinuous,  

f
 -1

(A) is pre-semiclosed. By Theorem 3.11(i), X is rps-T⅓. Therefore f
 -1

(A) is rps-closed. This proves (ii)   (iii). 

Suppose f is rps-continuous. Let AY be closed. Since f is rps-continuous, f
 -1

(A) is rps-closed. By  

Theorem 3.11(i), X is rps-T½. Therefore f
 -1

(A) is semi-pre-closed. This proves (iii)   (i).        

                                                                                                                                                                                   □ 
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4. Examples   

  

Example 4.1  
Let X = {a,b,c} with τ = {Ø,X,{a},{a,c}}.Then (X,τ) is rps-T½, rps-Tb and rps-T¾ but not pre-semi-T½, not semi-pre-

T½, not pre-regular-T½, not pre-semi-Tb and not rps-T⅓. 

 

Example 4.2  
Let X = {a,b,c} with τ = {Ø,{a,b},X}. Then (X,τ) is rps-T½ and rps-T¾  but not rps-Tb and not semi-T½.        

 

Example 4.3  
Let X = {a,b,c} and τ = {Ø,{a},{b},{a,b},X}. Then (X,τ) is rps-T⅓, rps-Tb, rps-T½ and  pgpr-T½ but not pre-semi-T¾  

and not rps-T¾. 

 

Example 4.4  
Let X = {a,b,c,d} with τ = {Ø, {a},{b},{a,b},{b,c},{a,b,c},X}. Then (X,τ) is semi-T½  but not rps-T½ and not rps-T⅓.  
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